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A variational formulation is presented for a class of magnetohydrodynamic 
(MHD) channel flow problems. This formulation yields solutions for the fluid 
velocity and the induced electric potential in a channel with a uniform transverse 
static magnetic field. The channel cross-section is constant but arbitrary, and 
the channel walls can be either insulators or conductors with finite electrical 
conductivity. Electric currents are permitted to enter and leave the channel walls 
so that the solutions are suitable for MHD generator and pump applications. An 
example of a square channel with conducting walls is solved as an illustration. 

1. Introduction 
The study of magnetohydrodynamic (MHD) channel flow has received con- 

siderable attention in the past decade. This interest has been motivated by three 
principle applications: the MHD generator, the MHD pump, and the electro- 
magnetic flowmeter. 

The general model that is normally considered in these studies consists of 
an infinitely long channel of constant cross-section with a uniform static magnetic 
field applied transverse to the axis of the channel. The walls of the channel are 
either insulators, conductors, or a combination of insulators and conductors 
depending on the intended application. 

For example, in the MHD generator and pump cases, the channel cross-section 
is normally rectangular with insulated walls perpendicular to the magnetic field 
and conducting walls parallel to the magnetic field. For the electromagnetic flow- 
meter case, the channel cross-section is normally circular with conducting walls. 

In  order to carry out an analytical solution for MHD channel flow it is generally 
necessary to make simplifying assumptions, such as requiring the channel walls 
to be either perfect conductors or perfect insulators or requiring the channel walls 
to be very thin. These and other simplifications often greatly limit the usefulness 
of the results. In  addition, many analytical solutions give results in the form of 
infinite series which converge poorly for the large values of the static magnetic 
field that are encountered in practice. 

To alleviate some of these difficulties, Tani (1962) developed a variational 
formulation for the solution of MHD channel flow problems. His formulation 
gives solutions for the velocity profile and the induced magnetic field distribu- 
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tion in the channel for an arbitrary channel cross-section. It requires, however, 
that the channel walls be either perfect conductors or insulators and that the 
admissible functions for the velocity and induced magnetic field satisfy appro- 
priate boundary conditions. 

In  this paper a variational formulation is presented that gives solutions for the 
velocity profile and the electric potential distribution in a channel of arbitrary 
cross-section. It also gives solutions for the electric potential distribution in the 
channel walls. The walls of the channel can be a combination of insulators and 
conductors but the conductors may have a finite conductivity. Moreover, the 
formulation is sufficiently general to allow electric currents to enter and leave 
the channel wallsso that thesolutionsobtainedare suitable for the MHD generator 
and pump applications. The entire class of admissible functions for the velocity 
and potential need not satisfy the prescribed boundary conditions since they 
appear as the natural boundary conditions in this formulation. The class of func- 
tions must be sufficiently large, however, to contain those functions which do 
satisfy the boundary conditions, if the exact solution to the problem is to be 
obtained . 

The paper concludes with an example that consists of a square channel with 
conducting walls of finite conductivity. 

2. Themodel 
A cross-section of a generalized channel is shown in figure 1. It consists of the 

fluid duct S, bounded by the conducting walls S, and the insulated walls Xi. 
The contours C,, and Cfi denote the fluid-conducting wall interface and the 
fluid-insulated wall interface, respectively. The contour C,, denotes the outer 

Y 

FIGURE 1. Cross-section of generalized channel. 
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edge of the conducting wall. The vector n̂  is the unit normal to the contours with 
the positive direction as shown. 

The applied static magnetic field B, is uniform (independent of z, y ,  and z )  
and parallel to the z axis. The applied or generated current density at the outer 
edge of the conducting wall J, is considered positive when directed outward. 
It is assumed that the net current entering the channel cross-section due to J, 
is zero, so that the two-dimensional features of the model are retained. 

3. Basic equations 
The basic equations to be used are the standard MHD equations for steady 

state, fully developed, incompressible, laminar flow which consist of Maxwell's 
equations, the continuity equation, the momentum transport equation, and the 
generalized Ohm's law. These are: 

V x B = p 0 J ,  
V.B = 0, 
v.v = 0, 

(pV.V)V = - V p +  J X  B+qV2V, 
J = g , ( - V U + V x B ) ,  

where U ,  B, J, and ,u, are the electric potential, magnetic flux density, electric 
current density, and magnetic permeability of free-space, respectively; and V, 
p, 7, a,, and p are the fluid velocity, density, viscosity, electrical conductivity, 
and pressure, respectively. The fluid properties p, 7, and u, are assumed to be 
constant. Equations (1 a)-( 1 e )  are based, in part, on the assumptions that the 
magnetic permeability of the fluid is the same as that of free space, that the 
convection current is negligible compared to the conduction current, and that 
the electrical component of the pondermotive force is negligible compared to the 
magnetic component. 

Due to the uniformity of the channel cross-section and the applied magnetic 
field with respect to the z axis, it can be shown that all quantities in the basic 
equations are independent of z except for the pressure which is linear in z 
(Shercliff 1953). In  addition, it can be shown that the fluid velocity V has only 
a z component V ,  and that J has only x and y components (Hunt 1969). Further- 
more, the total magnetic field B consists of the applied field B, in the x direction 
and an induced field in the z direction. 

Using these properties of the solution, ( 1  a)-( 1 e )  can be combined to give the 
following governing equations : 

These equations apply, of course, only in the fluid duct region S,. In the con- 
ducting wall region s,, (2a) applies with V ,  = 0. In  the insulated wall region Si, 
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(2a)  also applies with E = 0, but it need not be solved since the boundary con- 
ditions along the fluid-insulated wall interface permit the solution to be found 
exterior to the insulator region without knowing the potential within the 
insulator. The boundary conditions appropriate to this problem are as follows: 

Elf = 0, on C,, and Cfi, ( 3 4  

q,- UI, = 0, on Cf,, (3b) 

ufVU.,2iJ,-u,VU.rZI, = 0, on C,, ( 3 4  

afVU.Gl ,  = 0, on Cfi,  ( 3 4  

uwVU.Gl,+Ja = 0, on C,,, ( 3 4  

where I f  and 1, refer to evaluating the quantity on the fluid or wall side of the 
contour, respectively, and where a, is the conductivity of the conducting walls. 

The boundary condition equations (3  a)-( 3 e) require the following : 
(i) The fluid velocity must vanish on the fluid-wall interfaces C,, and Cfi. 
(ii) The electric potential must be continuous across the fluid-conducting wall 

interface C,. 
(iii) The component of the electric current normal to the fluid-conducting wall 

interface Cfc must be continuous. 
(iv) The component of the electric current normal to the fluid-insulated wall 

interface Cfi must vanish. 
(v) The component of the electric current normal to the outer edge of the con- 

ducting wall C,, must equal the applied or generated current J,. 
In solving the equations it is convenient to work with dimensionless quantities. 

This can easily be accomplished by defining L and V, to be a characteristic dimen- 
sion and characteristic velocity of the channel. Let 

X = x/L, Y = y/L, 2 = x/L (dimensionless co-ordinates), (4a)  

W = U / B ,  LV, (dimensionless potential), 

V = t / V ,  (dimensionless velocity), 

M = BoL(af/flr)a (Hartmann number), 

(4b) 

(4c) 

(44 
- L2 ap 

O -  7% ax 
p--- (dimensionless pressure gradient), 

J, = J,/B,V,cr, (dimensionless applied or generated current), (4f) 

y = u,/af (ratio of wall-to-fluid conductivity). (49) 

Combining (4a)-(4g) with (2u)-(2b)  yields the following set of equations in 
dimensionless form : 

( 5 4  

a2v a 2 7  aw 
__ + + Po+M2- - M 2 V  = 0, on X,, 
ax2 aY aY 

a2w a2w 

ax2 a y 2  
__ + ~ = 0, on S,. 



A variational principle for magnetohydrodynamic channel $ow 2 15 

Likewise, combining (4a)-(4g) with (3a)-(3e) gives the following set of dimen- 
sionless boundary condition equations : 

- ”)I -J,  = 0, on c,,, 
[i + ( d ~ / d x ) 2 ] +  ax ax ay 

The unit normal vector 2 has been replaced by 

where a, and a, are the unit vectors in the X and Y directions, respectively. The 
sign of the square root must be selected so that the positive direction for 6 is as 
shown in figure 1. 

4. Variational expression 
To convert the solution of the governing differential equations into an 

equivalent variational problem, a functional of the dependent variables V and 
W must be constructed so that the associated Euler-Lagrange equations are 
the basic governing equations (5a)-(5c), and the corresponding natural boundary 
conditions are the prescribed boundary condition equations (5d)-(5h). This con- 
struction will be performed by summing terms that are obtained by multiplying 
each governing equation and boundary condition equation by a suitable function 
and then integrating over the corresponding area or contour where the equation 
is valid. 

Let SV and SW be the variations of V and W ,  respectively, where it is assumed 
that SV and SW are continuous with piecewise continuous first derivatives. The 

are identically zero for any SV and GW, since the quantities in square brackets 
are identically zero by virtue of (5a)-(5c). 
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Four additional integral expressions that are identically zero can be obtained 
from (5d)-(5h) by integrating along appropriate contours. Recalling that the 
differential length along a contour is given by [1+ (d Y / d X ) 2 ] t  d X ,  these integral 
expressions can be defined as 

s,, I5 E -2M2 

I. = -2yM2 I 

aw SW, ( 7 4  

(7 e) 

(7f 1 
aw 

J C c o  

Cfc + Cfi 

These integrals vanish since the quantities in brackets are zero by virtue of 
(5d)-(5 h,). 

The integrals 11-1, can be integrated by parts and combined to give 
7 

n=l 
I, = 63 ,  

where 

Since each I, (n = 1, ..., 7) is identically zero, the variation of the functional F 
is zero. Thus, P is stationary; that is, first-order changes in V and W about 
their true values produce only second-order changes in P. The converse of this 
statement is also true. Of all functions that are continuous with piecewise con- 
tinuous first derivatives, the particular pair of functions for V and W that make F 
stationary satisfy both (5a)-(5c) and (5d)-(5h) and, hence, are the desired 
solutions. 

Even though F was shown to be stationary, it does not necessarily mean that F 
has an extremum at the true solution for V and W .  For example, as V and W 
are varied from their true values, F may always increase, always decrease, or 
either increase or decrease depending on how V and W are varied. To determine 
which case corresponds to the F under consideration, the quantity F( V + cSV, 
W + SW) - P( V ,  W )  is computed, giving 

F (  V + S V ,  W+6W) -F(  V ,  W )  
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-J,[1 + ( d Y / d X ) 2 ] ~ d X  6W 1 IL 

(9) 

A careful examination of (9) reveals that the first six integrals vanish because 
the quantities in large square brackets are identically zero. The remaining 
integrals are of second-order in 6V and 28'. This result is not surprising, since P 
was constructed so that all first-order terms in SV and SW vanished. It is easily 
seen that (5a)-( 5 c )  are the associated Euler-Lagrange equations of the func- 
tional F and that (5d)-(5h)  are the natural boundary conditions. Of the three 
remaining integrals in (9), two are negative definite and the last can be of either 
sign. Thus, F has neither a maximum nor minimum at the true values for l' 
and W .  However, if the class of admissible functions for V and W is restricted 
so that the last integral must vanish, then F corresponds to a maximum at the 
true values for V and W ,  since P( V +  SV, W + 6W) -a( V ,  W )  6 0. 

A study of the last integral in (9) reveals that the proper restriction to impose 
on the class of functions for V is that each function must vanish on the contours 
Cfc and Cfi. An alternate choice which also makes the last integral vanish is to 
specify the normal derivative for each member of the class on C, and Cfi. This 
choice is useless, however, since it would require solving the problem another 
way first to determine the correct value for the normal derivative. 

Requiring the entire class of functions for V to vanish on Cfc and Cfi may provide 
a great simplification in many problems in obtaining approximate values for V 
and W since finding a maximum for Ir' is often much easier than finding a sta- 
tionary point. Moreover, requiring the entire class of functions for V to vanish 
on Cfc and Cf6 completely eliminates one integral in the expression for P given 

Before a solution for V and W can be determined, values for Po and J ,  must be 
specified. The dimensionless pressure gradient Po must be a constant. The dimen- 
sionless current density J,, however, can be specified as a function of the co- 
ordinates along the contour C,. Since the basic equations and boundary condition 
equations are linear in V ,  W ,  Po, and J, solutions for V and W can be obtained 
by superimposing solutions for Po + 0 and J, = 0 with those for Po = 0 and J, + 0. 

by (8bh 
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To complete the study of the variational expression, it is desirable to determine 
its physical significance. 

5. Physical significance of variational expression 
Consider the power or energy balance that exists in MHD channel flow. The 

power per unit length that is supplied to the fluid by the pressure gradient PAP is 

If this quantity is negative, it simply means that the channel is acting as a pump. 
The dissipative terms consist of the viscous losses in the fluid P,,, the ohmic 

losses in the fluid Puf, and the ohmic losses in the conducting walls Puw. Expressing 
each of these in terms of the power dissipated per unit length along the channel 
gives 

( l o b )  

(104  

Equation ( lob)  reveals that the viscous losses in the fluid can be split into two 
parts: the volume losses PTV and the surface losses PVs, where 

The surface losses are zero when the boundary condition is imposed that re- 
quires V to vanish on C, and Cfi. 

The remaining term to be considered is the loss due to the current J,. Since J, 
is positive by definition when it is directed outward, the power that is supplied 
t o  an external load per unit length of the channel PJ, is given by 

If PJa is negative, it  simply indicates that power is being supplied by an external 
murce. 



A variational principle for magnetohydrodynamic channel $ow 2 19 

Since power is conserved, the power balance for the channel can be expressed as 

PAP = p,. + pqs + PUf + puw + PJ,. 

7 V i  F = 2P~p - PqV- Puf - Pum- 2Pqs- 2PJa. 

(11) 

Comparing the expression for the functional F given by ( 8 b )  with the various 
power dissipation terms given by ( 10 a)-( 10 9)  reveals that P can be expressed as 

( 1 2 )  

A word of caution is in order at this point. The expression for F given by ( 8 b )  
is defined and valid for an arbitrary choice for V and W .  Likewise, the power 
dissipation terms Pqu, Puf, etc., given by (IOU)-( log), are valid for arbitrary values 
for V and W .  Thus, ( 1 2 )  is valid, in general. However, (1 l),  which is the power 
balance for the channel, is only valid, in general, for the correct solutions for V 
and W .  

As shown in § 4, the stationary point for F corresponds to the true solutions for 
V and W .  For these values only, (1 1) and ( 1 2 )  can be combined to give 

E”,t = (pAp - ‘Ja)/7 V& (13) 

where it has been recognized that Pqs vanishes for the true V .  Thus, the stationary 
value of F is proportional to the difference between the power supplied to the 
fluid by the pressure gradient and the electrical power delivered to an external 
load. 

An important special case occurs for J, = 0, which yields 

where PAP has been replaced using (10a). Since the dimensionless pressure 
gradient Po is a constant, the stationary value for F is proportional to the average 
fluid velocity in the channel. This is a very important result since the average 
velocity, which is often the main quantity of interest, is proportional to a 
stationary quantity which can be computed to good accuracy. 

If the boundary condition V = 0 on C,, and Cfi is satisfied by all admissible 
functions, then F has a maximum at its stationary point as noted in the previous 
section. The maximum for F using a subset of the class of admissible functions 
for V and W will be less than or equal to the maximum for IE” using the entire class 
of admissible functions. Thus, a lower limit for the average velocity can be easily 
found by using any admissible function. 

6. Example : square channel with conducting walls 
A square channel is shown in figure 2 using the dimensionless co-ordinates. The 

characteristic dimension for the channel L has been chosen as one-half its height 
or width. The normalized wall thickness t is the actual wall thickness divided by L. 

Approximate solutions for the velocity and electric potential will be obtained 
using the Ritz technique. In this technique, the velocity and potential are ex- 
pressed in terms of known functions of X and Y that approximate the true 
solution but contain adjustable parameters A,, . . ., A,. The approximate solu- 
tions for T‘ and W are then substituted into the expression for F given by (8b ) ,  
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and the indicated integrations with respect to X and Y are performed. This leaves 
F as a function of the parameters A,, . . . , A, and the characteristic parameters of 
the channel Po, y ,  M ,  and J,. Assuming that the approximate solution for V 
vanishes at X = 2 1 and Y = 5 1 for all values of A,, . . . , A,, the stationary value 
of F can be found by maximizing F with respect to A,, . . . , A,. The corresponding 
values for A,, . . . , A, when substituted into the approximate functions for V and W 
will yield the closest approximations to the velocity and potential that are 
possible for the class of functions used. 

Y 

I l + t  

-1-t 

FIGURE 2. Cross-section of square channel with conducting walls. 

The solution for the square channel will be determined for Po = 1 and J, = 0. 
Let V and W be approximated by the trial functions given by 

V ( X , Y ) = A A , ( l - X a l ) ( l - Y a a )  ( O < X < l , O <  Y < 1 ) ,  (154 

W ( X ,  Y)=(C,YB1+C2YBz)(1+C,XB3) (0  < X < l + t ,  0 6 Y < l + t ) ,  (15b) 

where A,, C,, C,, C,, a,, a2, /Il, p,, and p3 are adjustable parameters. Because of 
the symmetry of the problem it is only necessary to specify V and W in the 
first quadrant. For other quadrants, V and W can be found using the relations 

V ( X ,  Y )  = V ( X ,  - Y )  = V (  - X, Y )  and W(X, Y )  = W( - X, Y )  = - W ( X ,  - Y ) .  

Since the admissible functions for V and W must be continuous with piecewise 
continuous derivatives, all exponents in (15a)-( 15b)  must be one or greater. 

Trial functions of the form given by (15a) have proved to  be very useful in 
obtaining approximate solutions for problems of this class. The functions offer 
great flexibility with a minimum number of parameters since the velocity profile, 
for example, can go from a parabolic profile (a, = a2 = 2) to nearly slug flow 
(al, a2 large) by merely varying the two exponent parameters a, and a,. 

Substituting (15a)-(15b) into the expressions for B given by ( 8 b )  yields, after 
performing the integrations, 

F = [lc.lT"[l [$I - [lc.lT[m (16) 
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In obtaining (16) the 'thin wall' approximation t 4 1 was made so that the 
results are directly comparable with published values. This approximation did 
not have to be made in order to use this technique but was done since only thin- 
wall results are available for comparison. 

The maximum value for P and the corresponding values for the parameters 
were found using a computer. Since the normalized cross-sectional area of the 
channel is 4 and Po = 1, the proportionality constant between the average 
normalized fluid velocity 7 and &is 4 (see (14)). Values for 7 as a function of the 
Hartmann number M are shown in figure 3 for various values of conduction 
parameter yt. 

The variational solution can be compared with other solutions for some limiting 
cases. For M = 0, the average dimensionless velocity from the variational solu- 
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tion is 0.1403, independent of yt as compared with the exact value of 0.1406, 
which can be computed using Fourier expansion techniques. 

The exact solution for the average flow in a rectangular channel with insulated 
walls (yt = 0 )  and perfectly conducting walls (yt = co) has been obtained by 
Shercliff (1953) and Chang & Lundgren (1961), respectively. Each of these 
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FIQ~RE 3. Variational solution for average dimensionless velocity in square channel. 

solutions is in the form of a series which converges poorly for large M .  Williams 
(1963), however, transformed these solutions and obtained asymptotic forms for 
the average velocity for large M. These solutions, simplified for Po = 1 and the 
square channel, are as follows: 

A comparison between the variational solutions and these asymptotic forms 
is shown in figure 4. The agreement between the two solutions for yt = 0 is 
excellent for M 2 10. The variational solution for yt = lo4 is always slightly less 
than the asymptotic form for yt = co. The difference, however, decreases to less 
than 0-1 % at M = 1000. 
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A Fourier expansion type solution for the rectangular channel with ‘thin 
walls’ of finite conductivity has recently been obtained by Chu (1969). A com- 
parison of his solution with the variational solution is shown in figure 5. The 

100 10l 101 
10-3 

10-1 
Hartmann number M 

FIGURE 4. Comparison of variational solution with Williams (1963) asymptotic solutions for 
average dimensionless velocity : -, variational ; ---,Williams for yt = 0 ; -. - ,Williams 
for ~t = 03. 

o*2 r Conduction parameter, T t  

Hartmann number M 

FIGURE 5. Comparison of variational solution with Chu’s (1969) solution for average 
dimensionless velocity : -, variational ; 0, Chu. 
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agreement between these two solutions is also quite good. As shown, the varia- 
tional solution for the average velocity is always slightly less than the series 
solution value. This is due to the fact that the computed maximum for P, and 
hence the average velocity, is always less than or equal to the true maximum for 
P since the trial functions used are a subset of the entire class of admissible 
functions. 
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